blazefl.core

blazefl.core#

Core module of BlazeFL framework.

This module imports and defines the core components of the BlazeFL framework, including client trainers, model selectors, partitioned datasets, and server handlers.

Functions

serialize_model(model[, cpu])

Serialize a PyTorch model's parameters into a flat tensor.

deserialize_model(model, serialized_parameters)

Deserialize a flat tensor back into a PyTorch model's parameters.

process_tensors_in_object(obj, mode[, max_depth])

Recursively traverses an object to process torch.Tensor instances.

reconstruct_from_shared_memory(handle_obj, ...)

Recursively reconstructs an object from a handle-based object and a shared memory buffer object.

Classes

BaseClientTrainer(*args, **kwargs)

Abstract base class for serial client training in federated learning.

FilteredDataset(indices, original_data[, ...])

A dataset wrapper that filters and transforms a subset of the original dataset.

ProcessPoolClientTrainer(*args, **kwargs)

Abstract base class for parallel client training in federated learning.

ThreadPoolClientTrainer(*args, **kwargs)

ModelSelector(*args, **kwargs)

Abstract base class for selecting models in federated learning.

PartitionedDataset(*args, **kwargs)

Abstract base class for partitioned datasets in federated learning.

BaseServerHandler(*args, **kwargs)

Abstract base class for server-side operations in federated learning.

SHMHandle()

A lightweight, serializable handle to a tensor stored in shared memory.